
www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

1

Prototyping Praxis:
Constructing Computer Systems and Building Belief

Douglas Tudhope, Paul Beynon-Davies
School of Computing

University of Glamorgan

Hugh Mackay
Faculty of Social Sciences

The Open University

ABSTRACT

This paper explores the consequences of the uncertainty introduced into the system
development lifecycle by a prototyping approach and the practical strategies employed by
developers in prototyping projects. Drawing on various strands of the sociology of
technology, the paper discusses findings from a multi-disciplinary research project, which
investigated the use of prototyping in commercial information systems development in the
UK during the period 1995-1998. Qualitative semi-structured interviews with commercial
practitioners were followed by a series of mini case studies. We draw on interview and
participant observation material and the practitioner literature on Rapid Application
Development (RAD). In the course of the project, we encountered a variety of practical
strategies which attempted to extend the sphere of developers' influence beyond the technical
realm to affect (but not determine) how the user/customer participates in the development
process. Various techniques attempt to create a climate of joint ownership and shared
approaches to change management. For example, the role of an ambassador user
encompasses shaping the environment in which the system will operate via information,
training and advocacy. Rather than a cause and effect model from user requirements to
specification to implementation, developer strategies can usefully be considered in terms of
sociological work on reflexive elaboration of networks. From this perspective, prototyping is
more akin to trying to stabilise a network of evolving prototypes, user expectations,
requirements and working practices than meeting a fixed specification.

Douglas Tudhopeis a computer scientist with interests in hypermedia, information science,
and the application of interactionist social science to Participatory Design; he is a Senior
Lecturer in the School of Computing, University of Glamorgan.Paul Beynon-Daviesis a
computer scientist with an interest in information systems development and information
systems management; he is Reader in Information Systems at the School of Computing,
University of Glamorgan.Hugh Mackay is a sociologist with an interest in technology and
culture and is researching computer system design and new media technologies; he is Staff
Tutor and Senior Lecturer in Sociology at the Open University.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

2

CONTENTS

1. INTRODUCTION
1.1 Overview of Paper
1.2 Related Work
1.3 Approach

2. PROBLEMS OF PROTOTYPING
3. RAPID APPLICATION DEVELOPMENT
4. MESSY NETWORKS

4.1 Indexicality
4.2 Reflexivity
4.3 Actor Network Theory

5. PROTOTYPING STRATEGIES
5.1 Project management
5.2 Getting the ‘Right Users’

User Roles
Users as Ambassadors

5.3 Building Belief
6. THE CONTINGENCY OF STRATEGIES

6.1 Intensive RAD Case Study
6.2 Discussion

7. CONCLUSIONS

1. INTRODUCTION

Prototyping is a rich area of study for HCI. It collapses the usual separation in space and
time between developer and user. While prototyping and user involvement are now mainstays
of user-centred development approaches (Gould & Lewis, 1985), the implications leave
many questions unanswered. Managing the practical problems of user involvement and
prototyping is a very topical concern for commercial developers.

1.1 Overview of Paper
This paper discusses findings from a multi-disciplinary research project, which

investigated the use of prototyping in commercial information systems development in the
UK during the period 1995-1998. Qualitative semi-structured interviews with commercial
practitioners were followed by a series of mini case studies. Previous work on prototyping
(Alavi, 1984; Boehm, 1986; Gordon & Bieman, 1995; Miller-Jacobs, 1991; Thomsen 1993)
has highlighted project management and user involvement as problem areas for developers
and this was confirmed by initial findings from our interviews (Beynon-Davies, Tudhope &
Mackay, 1999). Notwithstanding potential benefits, iterative development poses greater
uncertainty for the management of a project, compared with more prescriptive waterfall
methodologies, for example in defining the final closure of the project and in the likelihood
that user requirements will change during the development. Indeed, in attempting to set up
interviews we came across developers who did not use prototyping for these reasons.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

3

In this paper, we take these problems as our point of departure. Our aim is to provide
some understanding of the strategies and practical methods evolved by developers to deal
with prototyping and user involvement, drawing on various strands of the sociology of
technology that emphasise the reflexive elaboration of social/technical networks. In the
course of the project, we observed a set of practices which attempted to extend the sphere of
developers' influence beyond the technical realm to affect (but not determine) how the
user/customer participates in the development process. Section 2 illustrates some of the
practical problems for developers as we encountered them in the interviews. Prototyping was
frequently associated by our respondents with Rapid Application Development (RAD),
sometimes taken loosely to denote some kind of rapid prototyping approach. However, there
is a more precise definition and the practitioner literature on RAD is discussed in Section 3.
Section 4 outlines key sociological perspectives informing the discussion of practical
developer strategies in Sections 5 and 6. Section 7 draws conclusions and discusses future
research.

1.2 Related Work

Previous work on prototyping supports the relevance of the issues discussed here.
Evolution of requirements is cited as a potential advantage of prototyping as early as Carey
and Mason's (1983) survey and has continued to be stressed by some studies (e.g., Harker,
1991), and by advocates of a process perspective on system design (Floyd, 1987; Grønbæk,
Grudin, Bødker & Bannon, 1993). Alavi's (1984) comparison of prototyping with more
traditional development found that prototyping improved user-developer communication, but
that developers experienced more difficulty in managing and controlling the process, due to a
lack of know-how in project management. Frequent changes in user requirements could
frustrate designers unless they learned to view them positively. Hartson and Smith (1991), in
making a case for rapid prototyping tools, list evolution of requirements as a potential benefit
and differences from established management procedures in prototyping projects as a
possible pitfall. Hardgrave’s (1995) mail survey identified various factors employed by
managers to decide whether a prototyping approach was appropriate for a given project.
Requirements determination was a key factor – a major advantage of prototyping was in
situations where requirements were ambiguous or likely to change. Gordon and Bieman's
survey (1995) of published case studies found evolutionary prototyping strongly favoured
over throwaway, although they noted that developers must be careful to address performance
issues early on. Their findings on whether prototyping led to proliferation of requirements
(five cases) were mixed; in three cases prototyping was observed to lead to a decrease of
features, since critical features were emphasised at the expense of non-critical ones. In two
cases the need for effective procedures for managing prototyping effort was raised. Axtell,
Waterson & Clegg (1997) stressed the need for greater understanding of organizational
issues and that more careful selection of users was an important issue for developers.

Current work in the sociology of technology attempts to show how technical systems do
not evolve under their own imperative but have an inextricable social dimension. Recently
various authors have sought to represent technical and social elements as part of a seamless
web (for overviews: Bijker, Hughes & Pinch, 1987; Bijker & Law, 1992; for an application
to design: Suchman & Trigg, 1993). This perspective informs our study and speaks to a
growing concern in Participatory Design (PD) with the organizational context of prototyping
activity, although there are important differences between the practical developer strategies
in our study and PD’s principled position on democratic user participation. While work in



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

4

PD has successfully demonstrated various techniques for facilitating user involvement in
prototyping projects, several authors have stressed the need for further exploration of the
pragmatic issues faced in extending PD to wider commercial practice (eg Bødker,1996;
Clement & Van den Besselaar, 1993; Grudin, 1993). Kensing and Blomberg (1998) note that
PD researchers have begun to look for new ways of engaging with user organizations and
suggest that a degree of co-operation with management may be necessary for the success of
many PD projects. A recent collection of papers on PD (Trigg & Anderson, 1996)
highlighted the importance of the social and organizational context of system design.
Blomberg, Suchman and Trigg (1996) discuss the use of case-based prototypes to uncover
how a new system might be used in rich detail and to explore a new technology’s relationship
with underlying organizational politics and work practice. In the same collection, Gartner
and Wagner’s (1996) case studies of the introduction of computer technologies in large
corporations drew on actor-network theory (ANT) as a tool to analyse the political and
organizational context of design work. They explored the competing interests of the various
actors (shop stewards, management, etc) in the network with a view to understanding the
broader political framework within which the design activity was embedded. We also apply
an ANT perspective but focus at a more micro level on the specific practices employed by
developers when engaged in prototyping activity with users. Another case study of the effect
of organizational context focused on the working practices of in-house system developers,
including their ‘political’ strategies (Symon, 1998). Symon’s concluding suggestion is that
user consultation might be seen as much a political process as an exchange of information –
and that further research is needed on how user participation, beyond assisting with
requirements, may serve the function of conferring credibility on the developed system. In
this paper, we develop the theme that political and communicative functions are inextricably
inter-related. We explore the constitutive nature of developers’ practical strategies for
creating stable (for a time) networks of technical and non-technical elements, within which a
system can be seen as ‘working’.

1.3 Approach

During the first half of 1995, we conducted 40 telephone and face-to-face interviews
with commercial software developers who claimed to employ prototyping as part of their
software development practice. A wide range of organizations and geographical areas were
covered, including banks and financial institutions, the software industry, utilities,
manufacturing, local and national government agencies, media, transport, and the computer
departments of large commercial organizations. Half of the organizations were in the South
Wales/ Bristol/ Swindon area while the other half were in London or other parts of England.
The bulk of the sample was obtained via the School of Computing's student industrial
placement database, augmented by contacts known to the researchers and by some snowball
sampling (this use of interviewees to suggest other potential respondents may have resulted
in some slight bias towards RAD practitioners). Although a wide range of organizations was
covered, the intention was to conduct an exploratory study that allowed interviewees to
discuss their opinions and prototyping practice. We were looking to generate themes for
future study rather than confirm existing hypotheses (Golovchinsky, Chignell &
Charoenkitkarn, 1997). A checklist reminded the interviewer of topics for the semi-
structured interview, which covered the subjects’ definition of prototyping, perceived
advantages and disadvantages, how prototyping was employed in the organization, and the



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

5

nature of user involvement. Interviews were audiotaped1. Content summaries and field notes
were written while reviewing the recording, with partial transcription. Following the
interviews, observations were conducted of commercial prototyping practice, seminars and
RAD training events over a two year period. Further interviews were conducted with RAD
facilitators and consultants as part of these case studies. This paper draws on the interview
material and practitioner literature, supported by field notes and in some cases audio
recordings from observations of development activity and RAD training courses. Unless
otherwise identified, quotes are from the interviews.

The majority of applications in our interview sample were forms of database or
information systems (IS) developments. Beynon-Davies, Tudhope & Mackay (1999) gives a
quantitative analysis of the results from the interviews and surveys prototyping in the IS
literature. Prototyping occurred both as part of requirements capture and also development
method. It was employed contingent on situation and a wide variety of tools were used.
Following Grudin’s (1991a) breakdown of types of development context, roughly three
quarters of our sample were in-house developers (often in large distributed organizations),
with one quarter contract development. In fact, the latter fell more under bespoke
development than contract bidding (somewhat of a hybrid category). In part this distribution
is due to the initial sampling criteria that respondents be engaged in prototyping. More than
one third of the interviewees characterised their practice as employing some aspects of RAD,
while more than two thirds had heard of RAD. Time emerged as an important concern.
While some interviewees acknowledged the theoretical benefits of throw-away prototyping,
the vast majority employed an evolutionary technique, due to the time pressures of
commercial development contexts. There was general agreement on the potential benefits of
prototyping: a better fit with user needs and relationship with users, greater communication,
more user ownership of the final system, early identification of misunderstandings, a faster
development on the whole if well managed. The ability to deal with changing requirements
was seen as both an advantage and a disadvantage.

2. PROBLEMS OF PROTOTYPING

This section attempts to give a flavour of some of the practical problems posed by
prototyping projects, as we encountered them in our interviews with developers and project
managers. Within the broad areas of user involvement and project management, perceived
problems included proliferation of user requirements, difficulties with managing and
achieving closure of the project, unrealistic expectations by users and obtaining satisfactory
user involvement.

Proliferation of requirements can arise from more concrete visualisation of the
technology involved and what might be achievable. Users may be encouraged to ask for more
features if initial suggestions are incorporated. While this may ultimately result in a better fit
with requirements, it poses problems for project management. For example, a commercial
services developer had a very practical concern: “If you don’t control it properly you go into
continual development” and thus fail to achieve satisfactory closure of the project. In another
interview, a manager of the development group at a major London bank, where requirements
capture was conducted with focus groups in diverse locations, noted that he employed strict
timeboxing(see discussion of RAD in Section 3 and also Section 5.1) of these discussions to
avoid the proliferation of demands for features as knowledge of possibilities became more

1 Interviewees were guaranteed anonymity but in a few cases requested not to be taped.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

6

detailed. For him, setting strict time limits was important to stop projects "taking on a life of
their own" – the situation was compared to shutting the departure gates to allow a train or an
aeroplane to depart on time: “you're locked out ... they know that." Another reason for
proliferation is that new requirements arise in time as business needs change. For example,
the manager of the IT bureau at a regional hospital faced challenges following reorganization
of the National Health Service (NHS). In this situation, prototyping was useful when
requirements changed frequently. Project management strategies for prototyping are
discussed in Section 5.1 - these also include the managing of user expectations.

Unrealistic user expectations are often due to a mistaken view of the capabilities of the
system being developed or the underlying technology. The manager of an in-house system
development department in a regional house construction company was enthusiastic about
prototyping's potential to meet user needs more closely (systems are not just "thrown over the
wall"). However, he went on to elaborate that users may not realise they are only seeing “the
outside of a car” without an engine. For him, “The largest single potential problem in
prototyping is that it raises expectation levels early” since users have difficulty
understanding why theystill cannot have the system (“it’s there – I’ve seen it!”). Thus
“Keeping those [expectation levels] up and keeping the enthusiasm for the system is a
problem as the system goes further down the line [and does not seem to change] … getting
the expectation right and keeping it right.” In fact, some developers go so far as to introduce
code for the purpose of producing delays in the speed of operation of early prototypes to
avoid unrealistic user judgements of final system response.

Problems achieving satisfactory user involvement was sometimes expressed as the need
to involve the 'right kind' of user. We encountered a rich vein of trouble stories involving lack
of promised users, the futility of having the wrong types of users or accurately meeting the
wrong requirements. For example, although the users involved might know the business case
for the changes, they might be unskilled at work tasks. Conversely, end-users may prove
unable to imagine changes to existing work practices. The hospital IT manager above
stressed that one of the main problems in prototyping is getting the correct users to specify
the correct parts of the product - one would 'get the right user' by being sceptical regarding
those who are put forward as users; end-users also needed to be brought into the
development process. Even when suitable user representatives were present, they might
ultimately be repudiated by their organization, or developers would end up with user
representatives unable/unwilling to sign off. A frequent problem was that promised user
participation simply failed to materialise. Section 5.2 explores methods evolved for
attempting to facilitate user involvement. Developers would often make a link between user
involvement during prototyping and user ownership of the resulting system. There are
various aspects to this issue, which we explore in Sections 5.2 and 5.3.

3. RAPID APPLICATION DEVELOPMENT

Frequently (but not always) developers in our study associated prototyping with Rapid
Application Development (RAD). The background of RAD is a perception that a competitive
economic climate requires businesses to deliver systems within a faster timescale than
traditional methodologies provide (Bates, 1995; DSDM, 1995; Martin, 1991). Reasons given
include the growth of international markets, deregulation, and privatisation of public utilities.
Traditional requirements gathering is seen to take too long in large, multi-site organizations.
For developers to arrange separate meetings with spatially distributed stakeholders often
takes significantly longer than expected, and, furthermore, possibly conflicting requirements



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

7

from different user groups are not easily reconciled by developers alone. The technical
literature from one software tool (among many) associated with RAD makes a case against
traditional approaches:

Such traditional approaches to development are often referred to as waterfall
methods … However, this approach often results in applications that take a
long time to deliver and aren’t fit for purpose when they do finally arrive. One
cause of this is that users don’t really know what they need until they have
seen the system, or at least a prototype, in action. … Often a project takes so
long to complete, that business conditions and therefore the application
requirements have changed in the meantime. What is even more frustrating for
the intended business user is that because the traditional approach follows
such a strict sequence, this disparity remains hidden until the system is finally
delivered ready for use. (Antares, 1995, p8)

RAD is essentially a project management philosophy, normally including Joint
Requirements Planning (JRP) and Joint Application Design (JAD) workshops but with a
broader focus. Like JAD (Carmel, Whitaker & George, 1993; Wood & Silver, 1989), RAD
has evolved in industry with little influence from the academic world. RAD might be
regarded as a compilation of lessons from commercial prototyping experience. A much-
quoted axiom states that 80% of a system can be produced in 20% of the time required to
build the complete system. This underlies the concept of ‘timeboxing’, a change in the
relative priority of time and requirements compared to waterfall models. If a deadline is in
danger of being missed, lower priority requirements are moved back to a later timebox, or
the next phase of an incremental delivery. "Requirements can slip, timing never does"
(DSDM, 1995, p70). Martin's (1991)book,Rapid Application Development,is credited as
playing a key role in promoting RAD, along with other rapid prototyping influences
including JAD and Boehm's (1986) spiral model of iterative development. Martin argues that
business needs change substantially during long development times and that meeting current
business needs when the system comes into operation is a better aim than meeting a long
frozen specification. RAD appears to have grown out of the experience of large US
organizations, employing code-generating tools in evolutionary prototyping. In particular,
Martin highlights a 1989 shift at Dupont to a highly automated manufacturing environment,
and a subsequent need for 90 day application software development times (later extended to

120 days to allow the re-organization of user activities)2. The term timeboxing appears to
have been coined at Dupont at this time. Timeboxing is combined with an iterative approach
to product development involving incremental releases.

Subsequently, the DSDM (Dynamic Systems Development Method) consortium of
vendor and user organizations was formed in 1994 to produce a public domain, tool-
independent RAD method, first in the UK and then internationally. Stapleton (1997) provides
an overview of DSDM and case studies, while Beynon-Davies, Carne, Mackay & Tudhope
(1999) survey documented RAD projects. The DSDM manual (DSDM, 1995) includes
many of Martin's points and further elaborates various practical techniques. For example,
the ‘clean room’ emphasises the importance of commitment to user participation: users are
removed from other duties and their usual work environment to a dedicated area with
developers. Projects should commence with a feasibility study, where a 'filter' as to the

2 One of the UK RAD consultancy teams we interviewed had made an information gathering trip to
Dupont.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

8

suitability of RAD is applied – typically database-oriented applications not computationally
complex, where the interface is important. Subsequent stages include a business study, a
functional model iteration (with prototypes), a system build iteration, and ‘implementation’
(includes installation and training). Teams should be relatively small, with project length
from 2-6 months. The importance of higher management involvement to champion the
project is emphasised. In many ways the manual represents a collection of practical methods
for project management and enlisting user commitment and participation, rather than any
formal methodology. Key features are a prioritised set of requirements, timeboxing,
evolutionary prototyping with active user involvement, change control procedures, rapid
development tools and (possibly) incremental delivery. In our experience, the majority of
developers who were aware of RAD tended to pragmatically select elements rather than
follow it strictly, while others appeared to employ broadly similar techniques without
identifying them as RAD.

4. MESSY NETWORKS3

Various strands within sociology and the human sciences locate objects of analysis
within emergent social and technical networks. Much of this literature has been influenced to
some degree by an ethnomethodological perspective, which is (in part) concerned with how
everyday social reality can be seen as a situated accomplishment, achieved by participants’
taken-for-granted practical activities (Garfinkel, 1967; for an overview: Sharrock &
Anderson, 1986; with reference to system design: Dourish & Button, 1998; Suchman, 1987;
Suchman & Trigg, 1993). We draw on key themes from this literature and apply them to the
consideration of developers’ practical methods for managing prototyping activity in the
following sections.

4.1 Indexicality

In iterative design, users and developers communicate via various forms of prototype,
which can include computer artefacts, sketches, mockups, etc. A prototype is a boundary
object (Star & Griesemer, 1989), around which users and designers attempt to negotiate and
share an understanding. As a glossing practice or 'mock-up' (Garfinkel & Sacks, 1970), it is
also indexical in so far as it is intended to resemble the intended system in some important
aspects, but inevitably is not completely specified. Users will be less familiar than developers
with technical features being glossed (one of the reasons for the unrealistic expectations
discussed earlier) and developers may be unaware of the significance of omissions from
current work practice.

4.2 Reflexivity4

As we have seen, the notion that requirements, or ‘needs’, necessarily stand prior to and
apart from experience with a prototype is challenged in iterative development. Requirements,
prototypes and working practices are mutually constitutive -

3 The term ‘messy networks’ is taken from Bijker & Law (1992, p12).
4 The term ‘reflexivity’ tends to be over-loaded. Sometimes it is taken to denote a critical reflection by
the author on the warrant for an argument or alternative points of view. The use here corresponds to
Garfinkel and to Woolgar’s (1988, p21)constitutive reflexivity.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

9

… a description [read prototype], for example, in the ways it may be a
constituent part of the circumstances it describes, in endless ways and
unavoidably, 'elaborates' these circumstances and is 'elaborated' by them.
(Garfinkel & Sacks, 1970, p337, in relation to natural language).

In general, this reflexive elaboration of descriptor and the circumstances being described
(of category and instance) underlies Garfinkel’s (1967) discussion of the documentary
method of interpretation. Through local sense making practices an underlying concept is
elaborated within local contexts. That elaborated concept in turn provides the basis for
interpreting future contexts, and so on. Thus in our case, paradoxically, the indexical and
reflexive nature of the prototype is both a source of troubles and an advantage – it affords a
mutual alignment of the elements of the network. A prototype is indexical of the system and
of the user requirements and future work practices that are part of the system’s context. The
prototype’s incompleteness and fluidity is a resource for the iterative and reflexive shaping of
both prototype and the context of use. Prototypes are modified in light of evaluation but
requirements (and user motivation) also evolve along with the system; inevitably, what users
think is possible comes to influence their articulation of requirements. In part, the very
process of interacting with prototypes shapes user requirements by giving a concrete focus to
the imagination. This can simply lead to a request for changes or additional features in the
prototype, but can have more complex outcomes, such as triggering a reflection by the user
on (new) work practices hitherto invisible to the developers (Trigg, Bødker & Grønbæk,
1991). Indeed, the developer can act as provocateur, using the prototype to challenge the
user to consider new possibilities for work practice (Mogensen, 1992). The involvement of
user representatives in prototype development can also feed into design of training activities
for new systems and affect the climate of reception.

4.3 Actor Network Theory

This ethnomethodological perspective is applied in Actor Network Theory (ANT).
ANT and related work sees technological productions as messy networks of interacting
elements, technical, social, and economic (Callon 1987; Law & Hassard, 1999). Our concern
is with developers, various kinds of users, perceived business needs, prototypes and work
patterns. Engineers are seen as lay sociologists or heterogeneous engineers (Law, 1992) in

that they attempt to mould society as part of the work of designing objects5. However they
are not privileged; all actors (human and non-human) are continually acted on by others as
they attempt to shape a network, of which they themselves are part. Within the computing
field, CSCW research into the organizational context of collaborative technologies is
concerned with the ‘co-evolution’ of artefacts and work patterns over time (O’Day, Bobrow
& Shirley, 1994). This reflexive or feedback network is also central to Winograd and Flores’
(1986) critique of cause and effect rationalistic models for human action and to their
alternative programme for design. Drawing on various hermeneutic traditions, including
Maturana’s notion of structural coupling in biological systems, they advocate designs which
evolve “in alignment” (p53) with their domain of application. Our focus in this paper is on
the development itself rather than adaptation of the delivered system but they can be seen as
different stages of the same process.

5 Hughes (1987) discusses thesocialengineering work of technological entrepreneurs such as Edison in
attempting to influence the audiences and cultural contexts for new technologies.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

10

A related concern focuses on the construction of identity and its role in attempts by
actors to achieve their aims (Callon, 1991; Michael, 1996) and in stabilising a network.
Interressementrefers to the general process by which one actor attempts to define an identity
for another actor, including a set of needs and interests, which will result in their enrolment
in a supportive place in the network the actor is trying to stabilise. To take an example,
Callon (1987) analyses a case study involving attempts by scientists to develop technologies
to prevent the depletion of scallop stocks. Actors include scientists, fisherman, scallops etc.
and identities and interests are imputed to fishermen (say) to encourage their playing a
desired role. Such attempts need not be successful (as in Callon’s example). Callon notes the
difficulty of maintaining a stable network; actors may 'betray' their roles and refuse to play
their assigned part, may be subject to other influences, and will in fact be part of a multitude
of overlapping socio-technical networks. This problem is shared by developers attempting to
enroll users, who are also part of many other networks. ANT’s focus on building networks
and its operationalization of the ethnomethodological concept of reflexivity can be seen in the
practical strategies used by developers and project managers.

5. PROTOTYPING STRATEGIES

This section discusses a number of practical strategies employed by developers for
dealing with the complexities of prototyping projects and the problems outlined in Section 2.
It is important to emphasise that these strategies are contingent, adapted to the situation,
influence and preferences of developers. In the RAD context, this was recognised in one
training course, where the method was held out as a source of techniques to adapt according

to context6.

5.1 Project Management

Developers were concerned to facilitate the right relationship with users, where input
was encouraged but not an endless sequence of requests for changes leading to the ‘continual
development’ mentioned in Section 2. For that commercial services developer, prototyping
was seen to require structure and clearly identified review points:

And I know we struggled for quite a while to actually find a methodology that
supported rapid development, because it typically flies in the face of all the
formal methods that you’ve known in other formal development approaches. I
think that what you have to do is get the balance right – you need to have the
formal structure round it and you need to have formal review points in it and
then you use the power of the tools to get you to those review points in as
quick a way as possible.

This was reinforced in another interview. A backlog in customer application
development had led the solutions/consultancy arm of an international computer corporation
to create their own rapid development tool. Subsequently, however, underlying problems
between developer and user communities were uncovered: “There was no relationship. They
hated each others’ guts. Didn’t want to talk to each other. Both blamed each other for what

6 On occasion the term ‘RADish’ was humorously employed by developers to denote projects
incorporating just a few RAD elements.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

11

was going wrong.” A reaction against “very structured methodologies” (such as PRINCE,
SSADM), unhelpful for faster development, initially led to a naïve (“hacking”) approach:

Essentially, we were saying that four years ago the way to do RAD is: You
get a user in and sit them at your desk with a screen and then start building
screens and the system with them. We started some projects that way and they
were pretty well an unmitigated disaster. In the sense that there was no change
control, there were no proper management, there was no sign off, there was no
end point. You could just go on and on forever.

These experiences led to a research effort culminating in a more structured methodology with
three major stages of prototype. “You actually need stronger project management techniques
and standards in doing a RAD approach, a prototyping approach, than you would maybe
even in a standard project”. In fact, sometimes these prototype stages were sold separately to
customers, as one way round the difficulties of developing cost estimating metrics for large
projects. The methodology was now marketed as part of their development product:

The thing that really seems to strike home and get us brownie points is that
our running those Joint Requirements Planning sessions, because often you
find that it’s the first time that you’ve ever managed to get the deliverers from
the company and the business users in the same room in an affable frame of
mind. … A team transforms from there as opposed to a request there and
those swine over there [developers] who never do anything we ask them to do,
sort of thing. It’s a bit of a trick I suppose, because in a sense you’re making
them part of a team and therefore responsible for the success or failure. But
it’s not. It’s so true. It’s kind of a trick in a political way I suppose, but
effectively you are tying together. You’re making them as responsible as the
rest of the team for any changes they agree on. Whereas with the sort of
vendor/supplier situation, they feel as though, I suppose, when they make a
request it doesn’t cost them anything. You have an IT department. There’s a
fixed cost. They should just go and do what I damned well ask them. …
There’s no real cost.

User involvement can act as a form of change management. We return to this issue in
Section 6.

Given that requirements will evolve, a recurring theme was a concern with managing
how users participated, and how changes were made to requirements, in order to avoid
proliferation and ‘unreasonable’ change requests ("dropping out of the sky" as a developer
put it in one seminar).

Management of traditional projects is about control: trying to prevent drift
from the signed off specification, controlling resources, etc. Managing a
DSDM project is about enabling constant change while continually correcting
the course of the project to in order to maintain its aim at the target - a fixed
delivery date for a usable system. To be successful with DSDM, the
organisation must change organisational, social and technical elements at the
same time. These all have impact on project management. (DSDM, 1995,
p62).

Various rules of thumb are suggested for user and developer project managers to decide
whether change requests are inside or outside the original scope of the business requirements
and it is suggested conventional contractual arrangements may need to be modified. The
pragmatics of arranging contracts for prototyping projects is a very real concern for project
managers. Thomsen (1993) describes Danish commercial experience with a spiral model



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

12

which lays out in advance an initial calculation and a template for negotiating changes to
system price and delivery time based on estimates of complexity of system components. The
Danish model allows the delivery schedule to be adjusted in the negotiations, unlike RAD
which prioritises time.

In RAD, timeboxing acts to package development units into manageable chunks, with

potential for flexibility if not all of the deliverables are “must haves”7. A DSDM consultant
recounted persuading a company with a very detailed set of requirements that they didn't
know what things would be like in five years time and instead to go for shorter timeboxed
contracts where they could "envisage the horizon". The system is less likely to evolve out of
step with its intended context. A key ingredient is the emphasis on prioritising requirements,
a discipline which reminds the user of the impact of changes and militates against the attitude
graphically depicted by the developer above. For example:

We document the requirements from the first JAD workshop. Then we ask the
owners to prioritise the requirements - this is very important - as "must have",
"ought to have", or "nice to have". What we find is that half are "must have"
and half are "nice to have". We never get any "ought to haves" on the first
pass. Then we go through the whole process again, asking "which of these
must haves are really ought to haves", so we can deliver some key business
benefits early. We ask "why is it a must have? If we didn't deliver this, would
the system not work?" and questions like that. We shift some of the "must
haves" to "ought to have". (DSDM, 1995, p48)

Note the emphasis on prioritisation. In effect, if this can be achieved then, taken in
conjunction with timeboxing and an agreed limit to the number of iterations, the prioritisation
sets up a future trajectory for the development where the real time management of temporal
constraints vis a vis implemented functionality is rendered more routine and less problematic.
A decision in principle has been taken that there are priorities within the requirements and a
framework set up for future discussions on particular lower priority requirements in
particular timeboxes.

5.2 Getting the ‘Right Users’

Various authors have highlighted the complexities underlying the termuser(Agre, 1995;
Bødker & Grønbæk, 1991b; Grudin, 1993; Low, Malcolm & Woolgar, 1993), an
abstraction with many varying uses in practice. We encountered varied characterisations by
developers of the type of users that should be involved. Usually the formulation was in terms
of a mix of qualities, including higher management or budget holders, end-users for detailed
specification and knowledge of work practices, skilled or competent users, knowledge of
overall business needs and the rationale for the system, people with vision of different ways
of doing things, possible champions of the system, ability to make decisions and sign off, and
simply availability and commitment to the project. An in-house developer for a large
commercial service organization elaborated:

It needs to be someone who's involved directly in the resultant system or the
operation of it. So it’s got to be someone who will have the authority to

7 In the intranet case study below, ‘MoSCoW’ rules were applied: ‘Must have, Should have, Could
have, Want to have.’ Another project applied a second level of prioritisation within the main set of
categories.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

13

implement it at the end if you like, someone who understands the environment
in which it's going to be used. So there's no point in having, if you like, a
manager in charge of a department being your user if he’s not
a) got the authority to implement it amongst them above him
b) he's not going to be the sharp-end user who has to use it in the final resting
place. I think you need to get a balance, and it's probably not just one person.
It’s probably a team. Again that depends on the size of the system.

There was widespread agreement that getting the right users was problematic. Higher
management support was important but it was also recognised that involvement posed
practical problems for user representatives. This was nicely illustrated in the intranet case
study discussed below, where developers and users were isolated for three weeks in a setting
geographically separate from users’ normal workplaces. The user team members spent a
significant amount of time fielding questions on the phone from their usual workplace. One
user, having spent the day with the developers on the RAD project, complained about now
having to work at the “day job” that evening in the hotel.

User Roles

The notion of roles for users came up in the interviews and is also treated at some length
in the DSDM manual. There is a colourful typification of ideal-type users and their
responsibilities. The Executive Sponsor (RAD champion) is a high level executive role,
essential in securing commitment to user participation, who owns the system and can resolve
organizational issues. The Visionary's role is to retain the initial vision for the project to
guard against excessive requirement drift. Advisors are end-users with detailed working
knowledge. The Ambassador User is a key role and would normally be part of the
development team. This should be a user with some working knowledge, who represents
different user groups, works closely with developers in the project team and, crucially, is
empowered to make decisions. Note the prescriptive element in the definition of the roles.
The manual suggests setting the Ambassador User involvement at the start, fixing regular
times in staff weekly diaries when the project has first priority. Agreements with users and
their managers on time commitment is also suggested, as well as training for user
organizations on how to participate in RAD. While we did not come across any faithful
duplication of these roles in our field work, we did encounter subsets of the roles, pragmatic

adaptations or attempts by developers to suggest such roles8.
The user taxonomy, in effect, enlists a user organization's involvement in a development

project, by laying out a template of roles (with responsibilities) for the organization to take
part in the project. User organizations are encouraged to take part in RAD awareness
courses and RAD literature places some emphasis on user training. In general, such efforts,
part of the promotion of RAD, can be seen as an interressement of customer organizations
by identifying them as wanting quicker and better systems, and asserting the benefits to be
gained from departing from the traditional hands-off role during development. Thus the
concept, user, is translated to a number of well defined roles, involving an active and orderly
participation in the development process from the developer’s point of view.

8 From our experience it does not seem easy for developers to gain access equivalent to the full set of
DSDM user resources. However, case studies of RAD projects exist - see Stapleton (1997).



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

14

Users as Ambassadors

It is worth considering the notion of Ambassador User in more detail, who both
represents user needs to the development team and represents the (evolving) system to the
wider world.

The holder of the Ambassador User role must have the desire, authority,
responsibility and knowledge to be able to ensure that the right system is built
for the business. This does not necessarily imply a senior position within the
organisation, but a level of empowerment during the project to fulfil the role
and an allocation of time to fully participate in the project as required.
(DSDM, 1995, p82) … The Ambassador Users write their test scripts. They
also build their training course. They know how to train people on their
system. They'll also write the user manuals. Finally they're also capturing
information for the workshop to kick off the next timebox. This is how the
change in mindset takes place. It's not an IT system; it'stheir system (DSDM,
1995, p92).

More traditional systems development may also be concerned with building networks.
Woolgar’s (1991) ethnographic study of a printer manufacturer discusses how users are
“configured” in a product development (mass-market) situation by a variety of means,
including documentation and helplines for appropriate use of the product. It was important
that the product be seen in the right context. Woolgar gives an example of a non-preferred
reading, in which a key reviewer did not attend a publicity briefing where the desired context
for the machine was presented and subsequently reviewed the machine using criteria not seen
as appropriate by the developers. In our study, developers were not only concerned with
configuring the participation of users during the development but ultimately in the context
for receiving the final system. One mechanism by which this can occur is part of the role
scripted for the Ambassador User, which involves taking the system back to the organization
and organising training. We asked a DSDM consultant about user roles:

Question: Do you think users have a role in the implementation process?
Absolutely. DSDM defines the ambassador role very clearly and makes sure
they don't drift off. They have to be present throughout the project. They have
to be present throughout the project (sic). They certainly are there early on
defining the high-level requirements, but then they should be present when you
build prototypes. Then refining their requirements, detailing them. At that
point they should be producing detailed business scenarios, they should be
putting together help texts to be read by other users. Going back to my
warehousemen, they were thrilled that they were going to be writing their own
help texts because they would be able to understand it. Even when it gets
technical they should be there, monitoring, testing, but at that point they
should be thinking about what sort of training to do, how is change going to
happen.

This was illustrated in a three day DSDM in-house training course run by an
international corporation. In the introduction to RAD on the first day, the instructor
motivated the course by citing the long time taken by traditional methods, competitive
pressures from smaller startup companies, a failure to meet (internal) customer expectations
and significant time taken up in maintenance activities. A RAD approach was contrasted
with a personal bad experience as a user:



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

15

Two days after [System X] had been mentioned to me somebody walked into
the room with a disk in their hand and shoved it into my PC and twiddled
away on the keys for 15 minutes and said: There you are – you’ve got X. I
said: Great, now what can I do? They said: well there’s a training session
being held in three weeks time [which he couldn’t attend] and here’s the
training book.

The system was not well liked. This was contrasted with a hypothetical development where:
Maybe people from their own work group that are part of the team that’s
developing it there and they do take on ownership because these people come
back and they say that you know well that the old system never used to allow
us to do this. But I just insisted that they do and it does it now. And they go
away and they’re really good ambassadors. … And of course if you have
users involved during the development, they will be trained. They will actually
get to know what the different key strokes are, what the mouse does and
things. And even if they don’t know we’ll have some users in there who’ll be
able to write proper training packages and train the end users. The people that
actually know what they are doing will be training you and hopefully people
that speak the same language that you do.

When new work practices are involved, appropriate training and user receptivity
can be critical to a system’s ‘success’.

5.3 Building Belief

The importance of users’ confidence or belief in a system was a concern that surfaced
several times. The development manager of the housing construction company was asked
what made a successful system:

It’s got to satisfy needs, satisfy a requirement … I think there’s a more crucial
thing than that. What makes a successful system? It’s got to be used, it’s got
to be usable. People must want to use it. If they don’t want to use it or they
don’t like using it … if it’s not pleasant to use … then the system will fall into
disrepute, disuse and all the failings under the sun, from any loss that the
company makes to the coffee machine running out of sugar, will be blamed on
that system. … There is a problem we’ve found with the systems. If you wind
up in a situation like that where you get a system that is not in favour for
whatever reason that may be, it’s actually very very difficult to get of that
loop because the next system is the same. Your iteration, your review of it, is
the same, is tarred by the same brush – ‘this is another one of those. This will
be really hard to use’ - Unless there is major break of the mould, a major
change, look, feel, operation, it will just go the same way. Again it doesn’t
matter how good it is.

The identity of a system does not rest only in its technical components – motivational factors
are key elements of the network. Evaluative judgements, as we see above, are often based on
identities retrospectively constructed. It is also possible to set up prospective trajectories for
future motivation and action. Latour (1987) has been concerned to follow the actors in the
process of stabilising (black-boxing) technological achievements, in order to see apparently
solid scientific or technical facts “in the making”. A recent essay (Latour, 1997) deconstructs
the dichotomy between facts and beliefs and critiques the tendency to pass over the role of



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

16

human agency in the fabrication of each. In place of subjective beliefs opposed to ‘bald’
facts, Latour holds out the (social) construction of ‘dishevelled’ facts, surrounded by the
context that gives meaning. The reflexive network in which the evolving prototype is
embedded includes user confidence in the system. In one interview, a developer reflected
back on a career where prototyping had played an important part before the introduction of
modern tools or RAD and emphasised the prospective nature of user ownership and belief:

If you’ve been out there in the hard world, I’m sure you’ll know there have
been somebeautifullywritten systems which have been a total failure, because
essentially the customer didn’t believe in them, or the users didn’t believe in
them. And there have been someabsolutemonstrosities, especially mickey
mouse systems written on PCs by the users themselves, that fell down at every
instance, that had no integrity and all of the dreadful sins, but they loved it
because it was theirs. And a key difference in prototyping is that you sit down
with the user with a PC, or a screen painter or whatever it is, but you sit there
and you go through it with him. And by the time that you finished this exercise
whether it’s just taken a day, a week, a month. I mean usually it was, it was
for 2 or 3 hours every day or two over a period of weeks, and together you
built the system and by the end of it he felt it was so much his system or her
system that they’dmakethe bugger work. It didn’t matter how good, bad, or
indifferent it was, they would make it work. In fact it was usually pretty good
as well. But the winning of their hearts and minds was a major breakthrough
in my opinion because they invested the time and they took ownership.
(emphasis in original)

The developer emphasises that crucial factors in whether the system will eventually ‘work’
are thefutureactivities and motivation of the user and that these are strongly influenced by
previous prototyping experience, either direct involvement or, as we have seen, via
‘ambassadors’.

A concern with reflexively building user belief in a system resonates with studies of
innovation in other fields, both technical and cultural. Hoogma and Schot's (1996) case study
of attempts to involve users in the development of electric vehicles critiques the notion that
all that is required is for innovators to learn about users' needs and requirements. "Double-

loop learning”9 between users and producers is needed and intermediary structures that
allow the “mutual adaptation of a technology and its context/selection environment”. The
importance of lead users, in developing new technologies is stressed. Lead users are
characterised by competence in their understanding of (and ability to express) user
experience and tasks, by resourcefulness in their access to resources and know-how, and by

their incentive for innovation10. Creating amarket of expectationsis an important part of
the development process - a speculative market of early promises, solutions to problems and
possible scenarios. One factor encouraging user take up of stocks when floating a new option
in this market is an early demonstration of success in an initial trial. This builds user
confidence, encourages buy in and sets up a trajectory to the future, particularly if
sympathetic hearings of early performances (prototypes) can be encouraged. This also holds

9 The need for mutual learning has been well established in PD (Ehn 1988; Greenbaum & Kyng 1991).
10 Possible disadvantages include a potential for conservatism due to lack of vision or experience with
alternative ways of working, and a risk that lead users selected for their incentive to benefit may be
unrepresentative of the larger user population and may come to exert undue influence.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

17

for new computer systems. For example, an in-house developer found prototyping facilitated
partnership with users: "they get so possessive … that I shudder to think of any manager
who would criticise it”.

A similar emphasis on building belief can be found in studies of aesthetic innovation. For
example, in the cultural domain, DeNora's (1995) study of Beethoven's early career traces
how he and his supporters attempted to build a context for hearing his music, including
reform of the piano manufacturing technology of the day, musical-critical discourse and the
criteria for reviewing new performances. A controversy of the time concerned user
confidence in the new system - whether the new work could be clarified as a continuation of
an established musical style (“Mozart's mantle”). Although aesthetic constructions have
important differences from computer systems, some of the problems facing the innovator are
common. Hennion’s study (1989) of popular music producers also highlights the role of
iterative prototyping and intermediaries in cultural production.

6. THE CONTINGENCY OF STRATEGIES

In this section, we draw on elements of case studies conducted as part of the research
project together with interview material, in order to provide examples of network building
strategies and also to illustrate the complexities of real situations. Our focus on methods
employed by developers should not be read as a claim that they will be ‘successful’, meaning
that networks can be established or will prove stable, or that there is some simple formula.
As mentioned earlier, it was generally recognised that such techniques were contingent, to be
called on as contexts and organizational constraints permitted. In many situations developers
are not in a position to exert much influence. One site for observation was a large financial
institution with a specialist ‘new technology’ development team. The team were concerned to
present themselves as employing RAD, to strengthen possibilities for future RAD projects in
the organization. The development was iterative and involved prototypes, but in practice
developers were unable to achieve much direct user participation in this project (a key RAD
requirement)11. Another (not explicitly RAD) case study concerned a prototyping
development in a utility company moving from mainframe databases to PC-based
applications. The project manager was a technically aware business manager, referred to as
a ‘SuperUser’ by the developers, who played a key role in explaining and promoting the
prototypes to the general user community and in fact had developed a first, less elaborate
mainframe version of the proposed system. In demonstrations of the system to immediate
end-users, the SuperUser translated between development features and user work practices
and the lead developer frequently directed his gaze to the SuperUser when explaining the
system. The interressement (to use Callon’s term) was successfully extended in another
meeting to a neighbouring section of the organization which also decided to adopt the
proposed system for their purposes. However yet another meeting with a more distant group
did not succeed in enlisting them into the project. The SuperUser was less familiar with the
culture of the other group, differences in work practices and perceived status of the end-users
emerged, and an alternative design was produced to counter the proposal.

6.1 Intensive RAD Case Study

11 See also Button and Sharrock (1993) on accounting strategies in development activity.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

18

Another inhouse case study12 occurred in the same international corporation whose RAD
training courses we discussed in Section 5.2. The project was seen by the organization as the
purest form of RAD they had employed, due to its ‘intensive’ nature and the high degree of
user involvement. Developers and user representatives were sequestered for three weeks
(going home at weekends) in a setting remote from users’ normal work places. The objective
was to build an intranet website to provide resources for corporate PR activities and avoid
duplication of effort by different centres throughout the country. An extensive set of web
pages with associated Perl scripts was developed, building on and significantly extending a
previous iteration along similar lines. Acceptance criteria for the project included approval of
the ‘look and feel’, by user representatives on the RAD team, testing by user team members
and by user representatives from outside the team – a widening circle of user exposure. The
initial project plan included a formal review with three higher management representatives
midway though the three weeks. In fact, this occurred towards the end of the second week
and resulted in some changes to the combined project team’s design to take account of the
managers’ input. Of course, this resulted in some extra work for the team and departs from
standard RAD ideas on how development should proceed. (The notion of an ‘empowered’
joint design team is central to RAD guidelines but in practice this takes place within the
constraints of organizational structure.) However, explicitly incorporating management
approval into the prototyping process acts to raise their level of ownership and belief in the
system. In the third week, a live demonstration of the current prototype at a national
company meeting was marked as an important event by the team. The project manager only
brought back minor changes and reported that the demonstration had gone well. This would
have raised the value of the system’s stock in the local ‘market of expectations’, discussed in
Section 5.3. The project manager was from a user section of the organization (in fact the
distinction between developer and user is not always clear) and was indeed able to exercise
some control in the selection of team members (rejecting some candidates as unsuitable for
the project). Not all users could be retained for the full three weeks of the project – a
problem in intensive projects for continuity and dependence on any specialised knowledge.
However, providing the user experience is positive, the more users with experience of the

development, the more potential ambassadors to promote the system to other users13, as in
the training course discussion (Section 5.2).

A strong team spirit evolved – ‘us’ and ‘them’ referred to the boundary between the
user-developer team and the rest of the organization. User representatives were actively
involved in both design and development activity. They participated in ‘brown papering’
design sessions aided by the use of low technology mockups and also authored HTML
documents while the developers worked on Perl scripting. The use of a ‘clean room’
dedicated project area allowed both design discussions and online sessions. Demonstrations
of prototypes by the developers were informal and often involved live modifications (Bødker
& Grønbæk, 1991a), a capability much appreciated by the users. The intensive development
did put some strain on users since it did not prove possible for them to leave behind all other
responsibilities. Typically, user representatives spent an hour on the phone each morning

12 A detailed discussion is given elsewhere (Tudhope et al., 2001).
13 Another potential facet to the role of Ambassador User, as a relayer of news and events from
‘abroad’, was suggested when an ex-user representative, replaced half-way through the project due to
other duties and now at their usual workplace, faxed a warning of a last minute change in arrangements
for the demonstration back to the project team. In fact, Stapleton (1997, p42) makes the comparison
with diplomatic ambassadors.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

19

dealing with issues from their usual workplace. Training activities were another
responsibility of user representatives. In fact, a planning document for this development
stressed that a lack of formal training with the previous iteration’s product had led to
ignorance of its full capabilities and some customer resistance. Accordingly training material
was included as an output, to be used later to help develop regional ‘supertrainers’ who
would in turn train local users on a one-to-one basis. Preparation of training material
appeared on two occasions in the work plan constructed in the closing review session each
day, with two user representatives involved in this activity on two days out of the fifteen
allotted to the project. Stabilising a network involves a reflexive interaction with the context
in which the system will operate, from input on current work practices to training and
confidence building measures.

Requirements had been prioritised into 3 levels at a meeting before the development with
management representatives present. A time-boxing exercise during the project descoped the
lower priority requirements and the project met the level 1 priorities, except those identified
at the requirements meeting as impractical in the time scale. The development we observed
was the second in a series of three iterations. (RAD facilitators had created a video about the
first iteration, in order to promote the use and acceptance of RAD within the organization.)
The system was put into operational use and a year or so later a third iteration, run on
similar lines, developed an extranet extension for communication with international PR
agencies. Incremental delivery of system components makes it easier for work practice and
system functionality to co-evolve and to keep in step with changing business conditions and
requirements.

6.2 Discussion

Mediators, including surrogate users and third-party organizations, who act as indirect
channels of communication between users and developers, have been identified by Grudin
(1991) as an important channel of information for both camps. They have also been found
useful in CSCW (e.g., Okamura & Fujimoto, 1994), installing or tailoring an
implementation to a local context and shaping user interaction. Developers were identified in
Symon’s (1998) case study as potential organizational (business) change agents beyond the
purely technical realm. As seen here, this potential exists with users also. It is clearly a key

element in the identity of the DSDM Ambassador User14 and some interviews identified
users as an important mechanism for effecting change. One developer pointed out that a
system had to be sold to its users. A “change agent” learned how the system worked and then
returned to “sell” the system and also assisted with any further iterations. Another talked of
increasing ownership of a system by inviting “power users” to play with a prototype and then
report back on progress. The construction company development manager, quoted in Section
2, also emphasised ownership (belief):

The prime value [of user involvement] is ownership, ownership of the system.
From day one, it’s their system … It’s our [the users] system because we
devised it. It also means that if there’s six people around the table, you know
there’ll be six people at the end who’ll want to have a go at it and will be keen
to push it. Whereas any system that’s owned almost purely by IT and IS, you
then have to install it and you have to gain this acceptance of systems. All our

14 In fact, the part played by the user representative, Andy, in Symon’s study is a good example of the
Ambassador User role.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

20

past bad systems have been done really by ourselves with virtually no user
involvement.

When talking with developers, unfavourable references would sometimes be made to
non-prototyping approaches, where various means might be employed to manipulate users
into ‘signing off’ on systems, with little understanding. Of course, it has to beunderstood
that these utterances play a performative role in the contrast structure they set up. From one
viewpoint, the strategies described here could be viewed simply as another manipulation of
user expectations by developers. There is an agenda implicit in these methods of enlisting
user participation in a process which is anticipated will result in a higher probability of
acceptance than a ‘lobbing it over the wall’ approach. However to view this as simply
manipulation by developers would be to miss the point. The developer (in Section 5.1), who
reflected whether joint Requirements Planning sessions might be a kind of ‘trick’ in that
users are made to feel part of a team, went on to suggest a broader perspective for viewing
this activity (“It’s not. It’s so true.”). Users make input and have agency. They take on some
responsibility for the future system. For their part, developers do not stand outside the
network and in fact surrender some control of project management for a sharing of
constraints and more active participation by users. This requires a change of attitude on the
part of both developers and users. For example, one of our interviewees referred to a need
for customers to throw away some of their traditional “comfort blankets” (fixed
specifications) in prototyping projects. This is not to say that identity of interests can always
be achieved. Relative power and status between developers and users and between user
groups is distributed differentially according to the particular situation. Although developers
in our study generally took pride in giving examples where convergence had been achieved
with users (and between different sections of customer organizations), there was awareness
that conflicting interests could arise in connection with changes to work patterns (see
Blomberg, Suchman & Trigg, 1996; Gartner & Wagner, 1996; Symon, 1998).

7. CONCLUSIONS

This study supports previous work on potential advantages and problems of prototyping
with user involvement and sheds new light on the practical methods employed by developers
as a response. The practices explored here attempt to influence both the choice of which
users are involved and the manner in which they are involved via user roles. This template of
roles not only encourages participation but also attempts to configure the manner of
participation. User requirements and expectations change as business constraints change and
experience with prototypes clarifies understanding of the evolving system and future working
practices. Managing user expectations and requirements is in part an attempt to share with
user representatives an appreciation of the constraints under which the development takes
place. Various techniques, including joint design teams and an early emphasis on
prioritisation, attempt to create a climate of joint ownership and shared approaches to project
management. RAD’s time-constrained development techniques, based around timeboxing
and phased delivery, may have wider interest.

Rather than a cause and effect model from user requirements to specification to
implementation, the developer strategies we have discussed can usefully be considered in
terms of sociological work on reflexive elaboration of networks. From this perspective,
prototyping is more akin to trying to stabilise a network of evolving prototypes, user
expectations, requirements and working practices than meeting a fixed specification. The



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

21

emphasis on time constraints and incremental delivery recognises that the stability of any
configuration is subject to external influences. The developer cannot hope to command the
context surrounding the system but may attempt to influence it and build confidence.
Conversely, the important role that lead users have to play, beyond requirements
specification and evaluation of interfaces, should be valued and realistically resourced.
Although our study focused on developer strategies, the sometimes offstage activities of
users came through as key elements of stable networks. There are different attributes of ‘user
ownership’. Production of training material can be performed by user representatives. The
role of a lead or ambassador user can extend to shaping the environment in which the system
will operate by providing information, training, tailoring and advocacy or motivation. There
are implications for organizational culture and professional and computer science education.
While the reflexive nature of the prototyping process can lead to a virtuous circle between
artefacts and work practice, with positive outcomes in terms of perceived fit to user needs, it
should also be noted that this channelling of expectations can sometimes encourage a
blindness to alternative solutions (Bødker & Grønbæk, 1991b).

Looking to future research, longitudinal, ethnographic studies incorporating viewpoints
of different actors, from initial requirements gathering through development to observations
of a system in operational use, are difficult to set up but would yield valuable insights. On
the practical side, it might be possible to apply existing PD techniques (e.g., Greenbaum &
Kyng, 1991) to the commercial practices of our study - the developers we talked to had no
awareness of work in PD. For example, although end-user involvement was seen as a key
source of information, there seemed limited awareness of the potential for encouraging users
to transcend current practice (Mogensen, 1992). Furthermore, while we observed informal
sessions involving future work practice scenarios, a more systematic approach to the
iteration of scenarios along with prototypes (Kyng, 1995) could be incorporated.

As noted in Section 1.3, our experience has been with in-house and contract developers
of bespoke systems. It is probably easier to connect with users in these situations than in
mass market product development organizations (Grudin, 1991b). The fact that our study
was centred on developers lends itself to an account where they figure as the technological
entrepreneurs, both working for customers and translating their needs. However, in our daily
activities we all inevitably belong to multiple, overlapping networks, assuming varying
identities and social roles and responsibilities. Distinguishing a particular network and the
identity of particular actors is, in part, a necessary product of the analyst's need to produce
an account. In this paper, we have concentrated on networks forged during system
development. Studies which focus on user communities, their appropriation of systems and
their network building activities would be a fruitful area for research.

NOTES

Background.Early ideas leading to this paper were presented in 1996 at a Participatory
Design session at the Joint Conference of the Society for Social Studies of Science (4S) and
European Association for the study of Science and Technology (EASST), Bielefeld.
Acknowledgements.We would like to thank all those who talked to us about their work, and
all participants in the case studies. We would like to acknowledge the work of the project's
two research fellows, Chris Carne and Roger Slack. Geoff Cooper, Daniel Cunliffe, Tia
DeNora, Lucy Suchman and the three anonymous reviewers made helpful comments on
previous drafts.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

22

Support.The project was funded by the UK Economic and Social Research Council (Grant
No. R000 23 5505).
Authors’ Addresses.Douglas Tudhope, Paul Beynon-Davies, School of Computing,
University of Glamorgan, Pontypridd, CF37 1DL, Wales, UK. E-mail:
dstudhope@glamorgan.ac.uk, pbeynon@glamorgan.ac.uk. Hugh
Mackay, Faculty of Social Sciences, The Open University in Wales, 24 Cathedral Road,
Cardiff, Wales, CF1 9SA, UK. Email:A.H.Mackay@open.ac.uk

REFERENCES

Agre P. (1995). Conceptions of the user in computer system design. In P. Thomas (Ed.),
Social and interactional dimensions of human-computer interfaces(pp. 67-106).
Cambridge: Cambridge University Press.

Alavi M. (1984). An assessment of the prototyping approach to information systems
development.Communications of the ACM,27(6), 556-563.

Antares. (1995).Huron ObjectStar Release 3.0 Technical Overview: a developer’s
perspective.Antares Alliance Group, Dallas, Texas. Document No. OSTECD-1095.3.

Axtell C., Waterson P. & Clegg C. (1997). Problems integrating user participation into
software development.International Journal of Human-Computer Studies,47, 323-345.

Bates P. (1995). 'Rapid Application Development - Concept, Methodology, or What?'. In M.
Stephens (Ed.),Proceedings of the Seminar Series on New Directions in Software
Development: RAD - How Rapid is Rapid?(pp. 1-21). University of Wolverhampton.

Beynon-Davies P., Carne C., Mackay H. & Tudhope D. (1999). Rapid Application
Development (RAD): an empirical review.European Journal of Information Systems,8,
211-223.

Beynon-Davies P., Tudhope D. & Mackay H. (1999). Information Systems Prototyping in
practice.Journal of Information Technology,14, 107-120.

Bijker W., Hughes T. & Pinch T. (Eds.). (1987).The social construction of technological
systems.Cambridge, Mass: MIT Press.

Bijker W. & Law J. (Eds.). (1992).Shaping technology/ building society.Cambridge,
Mass: MIT Press.

Blomberg J. & Kensing F. (1998). Participatory design: issues and concerns.Computer
Supported Cooperative Work,7(3-4), 167-185.

Blomberg J., Suchman L. & Trigg R. (1996). Reflections on a Work-Oriented Design
Project.Human-Computer Interaction,11, 237-265.

Bødker S. (1996). Creating conditions for participation: conflicts and resources in systems
development.Human-Computer Interaction,11, 215-236.

Bødker S. & Grønbæk K. (1991a). Cooperative prototyping: users and developers in mutual
activity. International Journal of Man-Machine Studies,34, 453-478.

Bødker S. & Grønbæk K. (1991b). Design in action: From prototyping by demonstration to
cooperative prototyping. In J. Greenbaum & M. Kyng (Eds),Design at work: cooperative
design of computer systems(pp. 197-218). Hillsdale, NJ: Lawrence Erlbaum Associates.

Boehm B. (1986). A spiral model for software development and enhancement.ACM
SIGSOFT Software Engineering Notes,11(4), 14-24.

Button G. & Sharrock W. (1993). Practices in the work of ordering software development.
In A. Firth (Ed.),The discourse of negotiation(pp. 159-180). Oxford: Pergammon.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

23

Callon M. (1987). Some elements of a sociology of translation: domestication of the scallops
and the fishermen of St. Brieuc Bay. In J. Law (Ed.),Power, action and belief(pp. 196-
233). London: Routledge and Kegan Paul.

Callon M. (1991). Techno-economic networks and irreversibility. In J. Law (Ed.),A
Sociology of Monsters(pp. 133-161). London: Routledge.

Carey T. & Mason R. (1983). Information systems prototyping: techniques, tools, and
methodologies.INFOR - Canadian Journal of Operational Research and Information
Processing,21(3), 177-191.

Carmel E., Whitaker R. & George J. (1993). PD and Joint Application Design: a
transatlantic comparison.Communications of the ACM,36(4), 40-48.

Clement A. & Van den Besselaar P. (1993). A Retrospective look at PD Projects.
Communications of the ACM,36(4), 29-37.

DeNora T. (1995).Beethoven and the construction of genius: musical politics in Vienna,
1792-1803.Berkeley: University of California Press.

Dourish P. & Button G. (1998). On “Technomethodology”: foundational relationships
between ethnomethodology and system design.Human-Computer Interaction,13, 395-
432.

DSDM Consortium. (1995).Dynamic Systems Development Method(v2). Farnham, UK:
Tesseract Publishing.

Ehn P. (1988).Work-oriented design of computer artifacts.Arbetslivscentrum: Stockholm.
Floyd C. (1987). Outline of a paradign shift in software engineering. In G. Bjerknes, P. Ehn

& M. Kyng (Eds.),Computers and democracy – a Scandinavian challenge(pp. 191-
212). Aldershot, UK: Avebury.

Garfinkel H. (1967).Studies in ethnomethodology.Cambridge: Polity.
Garfinkel H. & Sacks H. (1970). Formal structures of practical actions. In J. McKinney &

E. Tiryakian (Eds.),Theoretical Sociology: perspectives and developments(pp. 337-
366). New York: Appleton Century Crofts.

Gartner J. & Wagner I. (1996). Mapping actors and agendas: political frameworks of
systems of design and participation.Human-Computer Interaction,11, 187-214.

Golovchinsky G., Chignell M. & Charoenkitkarn N. (1997). Formal experiments in casual
attire: case studies in information exploration.New Review of Hypermedia and
Multimedia,3, 123-157.

Gordon V. & Bieman J. (1995). Rapid prototyping: lessons learned.IEEE Software,30(1),
85-95.

Gould J. & Lewis C. (1985). Designing for usability: key principles and what designers
think. Communications of the ACM,28, 300-311.

Greenbaum J. & Kyng M. (Eds.). (1991).Design at work: cooperative design of computer
systems.Hillsdale, NJ: Lawrence Erlbaum Associates.

Grønbæk K., Grudin J., Bødker S. & Bannon L. (1993). Achieving cooperative system
design: shifting from a product to a process focus. In D. Schuller & A. Namioka (Eds.),
Participatory Design: Principles and Practices(pp. 79-97). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Grudin J. (1991a). Interactive systems: bridging the gaps between developers and users.
IEEE Computer,24(4), 59-69.

Grudin J. (1991b). Obstacles to user involvement in software product development, with
implications for CSCW.International Journal of Man Machine Studies,34, 435-452.

Grudin J. (1993). Obstacles to participatory design in large product development
organizations. In D. Schuller & A. Namioka (Eds.),Participatory Design: Principles and
Practices(pp. 99-122). Hillsdale, NJ: Lawrence Erlbaum Associates.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

24

Hardgrave B. (1995). When to prototype: decision variables used in industry.Information
and Software technology,37(2), 113-118.

Harker S. (1991). Requirements specification and the role of prototyping in current practice.
In J. Karat (Ed.),Taking software design seriously: practical techniques for human-
computer interface design(pp. 339-354). San Diego: Academic Press.

Hartson H. & Smith E. (1991). Rapid prototyping in human-computer interface
development.Interacting with Computers,3(1), 51-91.

Hennion A. (1989). (Transl. G. Bowker). An intermediary between production and
consumption: the producer of popular music.Science, Technology and Human Values,
14(4), 400-424.

Hoogma R. & Schot J. (1996). How innovative are users: A critique of learning-by-doing
and -using. Paper presented at 4S/EASST Conference, Bielefeld.

Hughes T. (1987). The evolution of large technical systems. In W. Bijker, T. Hughes & T.
Pinch (Eds.),The social construction of technological systems(pp. 51-82). Cambridge,
Mass: MIT Press.

Kyng M. (1995). Creating Contexts for Design, In: J. Carroll (Ed.),Scenario-based Design
(pp 85-107). New York: Wiley.

Latour B. (1987).Science in Action.Cambridge, Mass: Harvard University Press.
Latour B. (1997). A few steps towards an anthropology of the iconoclastic gesture.Science

in Context,10 (1), 63-83.
Law J. (1987). Technology and heterogeneous engineering: the case of Portuguese

expansion. In W. Bijker, T. Hughes & T. Pinch (Eds.),The social construction of
technological systems(pp. 111-134). Cambridge, Mass: MIT Press.

Law J. & Hassard J. (Eds.). (1999).Actor network theory and after.Oxford: Blackwell/
Sociological Review.

Low J., Malcolm B. & Woolgar S. (1993). 'Do users get what they want?' - Introduction and
workshop report.SIGOIS Bulletin,14(2), 3-7. New York: ACM.

Martin J. (1991).Rapid Application Development.New York: Macmillan.
Michael M. (1996).Constructing identities: the social, the nonhuman and change.London:

Sage.
Miller-Jacobs H. 1991. Rapid prototyping: an effective technique for system development. In

J. Karat (Ed.),Taking software design seriously: practical techniques for human-
computer interface design(pp. 273-286). San Diego: Academic Press.

Mogensen P. (1992). Towards a provotyping approach in systems development.
Scandinavian Journal of Information Systems,4, 31-53.

O’Day V., Bobrow D. & Shirley M. (1994). The social-technical design circle.Proceedings
of the CSCW’94 Conference on Computer Supported Cooperative Work,160-169. New
York: ACM.

Okamura K. & Fujimoto M. (1994). Helping CSCW applications succeed: the role of
mediators in the context of use.Proceedings of the CSCW’94 Conference on Computer
Supported Cooperative Work,55-65. New York: ACM.

Sharrock. W. & Anderson B. (1986).The Ethnomethodologists.Chichester, UK: Ellis
Horwood.

Stapleton J. (1997).Dynamic Systems Development Method: the method in practice.
Harlow, UK: Addison-Wesley.

Star S. & Griesemer J. (1989). Institutional ecology, 'translations' and boundary objects:
amateurs and professionals in Berkeley's museum of vertebrate zoology,Social Studies of
Science,1907-1939, 19, 387-430.



www.manaraa.com

CONSTRUCTING COMPUTER SYSTEMS AND BUILDING BELIEF
Final Version: to appear in Human Computer Interaction, 15(4), 2000

25

Suchman L. (1987).Plans and situated actions: the problem of human machine
communication.Cambridge: Cambridge University Press.

Suchman L. & Trigg R. (1993). Artificial Intelligence as Craftwork. In: J. Lave & S.
Chaiklen (Eds.),Understanding practice(pp. 144-178). Cambridge: Cambridge
University Press.

Symon G. (1998). The work of IT System developers in context: An organizational case
study.Human-Computer Interaction,13, 37-71.

Thomsen K. (1993). The Mentor Project Model: A model for experimental development of
contract software.Scandinavian Journal of Information Systems,5, 113-131.

Trigg R. & Anderson S. (Eds.). (1996). Special Issue on current perspectives on
participatory design.Human-Computer Interaction,11.

Trigg R., Bødker S. & Grønbæk K. (1991). Open-ended interaction in cooperative
prototyping: a video-based analysis.Scandinavian Journal of Information Systems,3, 63-
86.

Tudhope D., Beynon-Davies P., Mackay H., Slack R. (Forthcoming 2001). Time and
representational devices in Rapid Application Development.Interacting with
Computers,13(3).

Winograd T. & Flores F. (1986).Understanding computers and cognition: a new
foundation for design.Reading, MA: Addison-Wesley.

Wood J. & Silver D. (1989).Joint Application Design: how to design quality systems in
40% less time.New York: John Wiley.

Woolgar S. (1988).Knowledge and reflexivity: new frontiers in the sociology of
knowledge.London: Sage.

Woolgar S. (1991). Configuring the User: the case of usability trials. In J. Law (Ed.),A
Sociology of Monsters(pp. 58-100). London: Routledge. An updated version appears in:
Grint K. & Woolgar S. (1997).The machine at work: technology, work and organization
(pp. 65-94). Cambridge: Polity.


